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1. INTRODUCTION

We study the in this work the geometry of the interface in the porous medium
equation
ou

azAum, m>1

with initial data nonnegative, integrable and compactly supported. It is well known
that this equation describes the evolution in time of various diffusion processes, in
particular the diffusion of biological species and the flow of a gas through a porous
medium. In the last case u represents the density, while f = mu™~! represents

the pressure of the gas and satisfies the equation
1
fo=f8f+—IDJP
m—1

When u = 0, then f = 0 and both of the above equations become degenerate.
This degeneracy results into the interesting phenomenon of the finite speed of prop-
agation: If the initial data u° is compactly supported in R”, the solution u(-,t)
will remain compactly supported for all time ¢. In [8] Daskalopoulos and Hamil-
ton showed that under certain assumptions on the initial data the free boundary
I' = Jsuppu is a smooth surface when 0 < t < T, for some T" > 0. It is well
known [1] that, in general, the free-boundary will not remain smooth for all time:
advancing free boundaries may hit each other, creating singularities.
In this paper we address the question: under what geometric assumptions on the
initial data, the free-boundary will remain smooth at all time ¢
Let us consider the initial value problem for the pressure f, namely the problem
%:fAf+r|Df|2 (x,t) € R™ x [0, 00)

(1.1)
f(a,0) = f° z € R",
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with r = 1/(m — 1), where f° is non-negative and supported on the compact set
Q={zreR™: fO@)>0}.

It is well known that for any integrable initial data f° > 0 the initial value problem
(1.1) admits a unique weak solution f on R™ x (0,00). Moreover, it follows by the
results in [4] that the pressure f as well as the interface is Holder continuous

If the initial interface 9f2 is convex, then it will not necessarily remain convex,
since its shape at time ¢ > 0 will depend on the speed of the free-boundary, namely
the gradient Df of the pressure, near the interface. However, we will show in
this work that, if the pressure f is initially a concave function, which in particular
implies that its interface is convex, then the support of f(-,¢) will remain convex
for all time 0 <t < co. In particular, under certain regularity initial assumptions,
the free-boundary will be a smooth surface.

One may ask: is the matrix inequality
Di2j <0

preserved under the flow ? In other words, if the initial pressure f© is weakly
concave, will f remain weakly concave for all time ? Surprisingly, this is not the

case. Instead, we will show in Section 2 that the matrix inequality

D<o

is preserved under the flow: if the initial pressure f0 is root- concave, then f will

remain root-concave for all time. Hence, the interface
Fr=90{zeR": f(z,t) >0}

will be convex for all t > 0. Using the geometry of the level sets of f we will show
that the pressure f is C'°°-smooth up to the interface, for all ¢ > 0. In particular
the interface will be smooth.

The above discussion is summarized in the following result, which will be shown

in Section 4.

Theorem 1.1. Assume that the function fO is smooth up to the boundary of 12,

and in addition it is root-concave in {2 and satisfies the non-degeneracy condition

fP+IDfPP>ec>0 (1.2)
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for some ¢ > 0. Then, the solution f of the initial value problem (1.1) is a smooth
function smooth up to the interface I' and f(-,t) is root-concave, for all 0 <t < co.

In particular, the free boundary T' is a smooth surface.

Remark. If the initial pressure f° is concave on its support, then it is also root-
concave. Hence, in this case also solution to (1.1) is smooth up to the interface for
all time.

The C®° regularity assumption on the initial data f° in Theorem 1.1 can be
weakend to only assume that f € C1(§2):
Theorem 1.2 Assume that f° € C1(£2) is root-concave in 2 and it satisfies the

non-degeneracy condition (1.2) and the lower bound on the Laplacian
Af> K in R" (1.3)

in the distributional sense, for some constant K > 0. Then, the solution f of the
initial value problem (1.1) is a smooth function smooth up to the interface T and
f(-,t) is root-concave, for all 0 < t < oo. In particular, the free boundary T is a

smooth surface.

2. THE RooT-CONCAVITY ESTIMATE

Let A be a compact subset of R" x [0,T],T > 0 with smooth lateral boundary

and let f be a smooth solution of equation:

of

ot

for some 0 < r < oo, with f =0, Df ## 0 on the lateral boundary of A and f > 0
inside A.

= JAf+r|[DfP,  on A

Theorem 2.1. If+/f is weakly concave at t =0, it remains so for all t.

Proof. We must show that the matrix inequality

D% (V) <0
is preserved in time.

To simplify the notation we denote 9/0t by as subscript ¢t and 9/0z* by a

subscript k. Then we can write the evolution of f as

(2.1) fo="1fex+7 17
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where the summation convention is used. Since

2 (V7) = 57 (55~ 57)

it is enough to show that the matrix inequality

Aij = fij — f;?

is preserved. What we will show is that A;; < 6 I;; for all 6 > 0. Of course this

<0

implies that A;; < 0. To do this we choose a positive function ¢ = (t) with

(2.2) br > c (¥ +9?)

for a suitable constant ¢ which will depend on bounds for f, f; and f;; and which

is sufficiently small at t = 0. Consider the quadratic

Z = <fij - f;? - TNij) Vi

in the vector V.

We will show that the inequality
Z <0

is preserved for all V¢ provided (1) holds. Since Z < 0 at t = 0, by compactness
there will be a first time to > 0 when Z = 0 at a point 2y € A and at vector Vj
with |Vp| =1, while Z < 0 for all ¢ < ¢y at all  and in all directions V.

Interior Estimate. Assume that zy belongs to the interior of the set A. We
extend Vj to be a smooth vector field V' in a neighborhood of (xg, #p) in space time
so that:

. 1
2.3 Vie —
( ) J 2f
at the point (xg,%p). (Note there may be an obstruction to (2.3) holding this in

(fVFE) I;

the full neighborhood, but we only need it to hold at the point (zg,%)). Also (to

simplify the notation) we choose the extension so that
V/=0 and V=0
at (xg,tp). Now
7 = ( L — ot —zpfij) %]
is a function of x and ¢ only. Differentiating equation (1) we compute

fie = ffink + fifur + 2rfr fir



and
fije = flijee + 2fi firr + 20 frfije + fij fee + 27 fir fik-
Thus

(fz‘jViVj)t = {f fijin + 2fi Finr + 20 fufign + fig fon + 20 fin fin} VIV

at (xo,t0). Also, using (2.3) we compute

(fV'V7), = {fijk + % } Viva

and

f(fiVivy),, = {ffijkk + 2fxkifi + finfiw — fintid + S Jils }ViVj

2f 2f

at (xg,to). Hence

(24) (fV'V7), = f(faVV7 )t 2r fi (fiVIVT),
+ fkk{(fij ]Zj,cj)ViVj}QrWViVj
+ 2rfufp V'V _fjk{<fz'k— 2f)V}V
of (.To,to).

On the other hand
(fifjvivj) _ {ijfik-k _ @fkk + Ar [ fi fik _ sz‘fjf;? } Vivi
t

f f f f?
while
fifjvivj) — 2firf; Viyi
(Frv), -
and
fifjvivj> _ {inkkfj ~ Jilife | 2fifie | Seefif; } Vivi

( / w U S Y A |

Thus
ffng>: (ffjj) (ffjj)
(2.5) (vav t f QfVV kk—l—?rfk QfVV .
- fik { (fjk - f;?) V]} vVt — Tf;;jgfk Vv
Since the vector Vy must be a null eigenvector for the matrix
fij — % — 1 I
at (xo,t0), we have:
Aijvi = <f1] — f;?) V= ﬂffijvi
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at (xo, o).
If ¢ = 0 all terms involving A4;;V* in (2.4) and (2.5) drop out; if not at least
they are bounded by
e |[V[2
for some constant ¢. Therefore from (2.4) and (2.5) we compute:
Zy < Zyk + 2 fy 2y + [eb =] VP + R

with

=
|

2 fuefn VIV =2 %V’W + % Vi

= 2rfu { <fik - f;;k) VZ} Vi— Tf}fk {(fjk - f;?) Vj} &

which again can be estimated as

R<cy V]2
We conclude that at (zg, o)
(6) Zy < [ Zi + 27 fuZi + (cp — ) |V ]2
and by choosing 1 satisfying (2) we can make
Zy < [Zkk + 21 fr 2y

at (xo, o).

Regardless of the way we extended V to V' we still have Z = 0 at (zg,to) and
Z <0 for all t < ty At all z in a neighborhood of xg. Thus Z; > 0,Z; = 0 and
AZ <0 at (xg,t0). Now if we choose

e > (v + 97
then since |Vp| = 1 we get that 0 < 0 in (2.6), which is a contradiction. Hence
Z <0
in the interior of A.

Estimate at the boundary. Suppose now that the inequality Z < 0 fails at
a point 2y on the boundary in a direction Vj # 0. Assume |Vy| = 1. Clearly Vj is

tangent to the boundary at xzq, so
fiVi=0

at zo (since f =0 at the boundary).



Lemma 2.2. At zq at time tg in the direction Vi we have

fefijViVI <o.

Proof: Choose a path z(s) parameterized by s with = 25 at s = 0 and

daxk

as

so that the path lies in the interior region f > 0 for small s > 0. Then choose a
vector field V'(s) along the path with V =V} and

vk
g |f‘2(fzfzj )f

at s = 0. Along this path the functions f and f;V* are both smooth and both zero

at s = 0. Then by L’Hospital’s rule

CRVE L d(fiVi)/ds
lim ; = lim dfjds

Now
f fk = | fil?

while

d i 2 7
78 (fzv ) fzyv fz 2fjfijv
which gives

lim ns _ 2fifiiV
s—0 f | fx]?

Consider the function

fifj
2f

along the path z(s) in the direction V'(s). Therefor for s > 0

Q _ fif; iy 4o fifs v
E - <fzy 2fj 7/1113> VVJdSJr2<fU2fJ’(/JI”) S V7

i (f” o flfjfk) s ( - 2 zw) Wy

Q = <fij - - 1/)Iij> ViVj

[ 212 ds

In fact the function @ extends to be smooth at s = 0, because f;V*/f does (since f

only vanishes at first order). Therefore we can evaluate d@/ds at s = 0 by taking
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the limit. Note that d@Q/ds < 0 at s = 0 since @ = 0 at s = 0, while @ < 0 for
s > 0. Rewrite

% = ’I“fkfijkvivj —r(fefiV") (fjfw> 5 |k |2< l ) (fjfw)

12, d;/z <fz dVl> <fj}/y> B q/}vi%

Now we can take the limit as s — 0. Using our chosen value of dV*/ds and our

limit of £;V?/f we get

aQ
ds

at s = 0 (after several cancellations!) This proves the Lemma, since d@Q/ds < 0.

rfkfzgk VZVJ

Now we study the time evolution. Pick a path z(t) for ¢ < ¢y with z(t) always
in the boundary, and with = g at t = tg. We also pick a path V(¢) for t < g
with V() always tangent to the boundary at the point z(t) at time ¢ for ¢t < Ty,
and with V =V} att:to

The variation 7 is constrained by the equation that f = 0 on the boundary, so

d
al =0

along the path x(t), which makes

k

dx
= —o.
Je + Jfx a
From the equation
fo="Tfun+rfi=rfr

on the boundary where f = 0. Thus we need to have

ok
fk( +7“fk>=0

and this is the only constraint on ¢%-. Therefore we chose

dxz*
o T e

Wherein the variation % is constrained by the equation f,V* =0, so

d
—(frVF) =
eV

In the vector V (¢) along the path x(¢), which makes

dv*
o + ftVE+ f]k—v’c =0.



(From the equation
fr=Fffa+rf}
we get

fri = ffirk + fifur + 2r frfir

and on the boundary where f = 0 in the direction V* where f;V* = 0 we get
fiVi=2rfiufix V"
Using dz* /dt = —r f,, we see that dV'*/dt is constrained by
dvk

fk{dt‘f'?"fikvi}zo

and this is the only constraint. Therefore we choose

dvk

— = —rfu V.
dt T fik

Now consider the function
Q={fij—vL;} V'V’
along the path x(t) in the direction V(t). Since f;V? = 0 along this path, this

agrees with our previous quadratic, and we have @) < 0 for ¢ < ¢y while @ = 0 at

t = tg. Therefore % >0 at t = tg. We compute d@/dt along the path.

dQ ATE
dt dt

From the equation

{fige =9 Ty Y VIV fige = m VIVI 4 2{ fiy =i } — = V7.

fije = ffijin + fifire + Fi fier + fig frre + 20 fi fijre + 27 fin fin
and since f = 0 and f;V? = 0 on our path, we get
[igtVV? =20 fi fip VIV + frr(figVIVT) 4 2r (fie V) (V7).
Now use fijViVj = |V|? at t = tg and dz¥/dt = —rf, and dVF/dt = —rf;,V? to
compute
A e B
at ok "

(after some cancellation!) If fir < c and ¢’ > ¢+ 2r1)? we must have dQ/dt < 0,
contradicting d@/dt > 0. The contradiction shows the quadratic

must stay strictly < 0. This proves our claim that \/f is concave, since ¥ can be

as small as we like.
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3. GRADIENT ESTIMATES

We will assume, throughout this section, that f is a solution of the initial value

problem
9 = fAf+7|Df|? on R™ x [0,T]
f(x,0) = f° in R",

which is smooth up to the interface for 0 <t < T.

Lemma 3.1. If f satisfies

Af>-K

in the distributional sense at t = 0, then

Ko

— , t>0
Kt+o

Af =
where o = (m — 1+ 2)71,
Proof. One can observe that the proof of the Aronson-Bénilan inequality
o
Af > - for t>0

in [2] can be slightly modified to show that

o
Af > — for t>0
f> oy or t>

provided that
Af>-2 at t=0.

T

Setting K = o/7, the result follows.
We prove next that if f is root-concave, then the upper bound of the gradient is

preserved under the flow.
Theorem 3.2. If f is root-concave on 0 <t < T and satisfies
|IDfI <C, at t=0.

then

|IDf| <C, t>0.

We show first the next simple lemma:
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Lemma 3.3. Assume that \/f is concave on 0 < t < T. Then for any point
P = (x,t9) at the free-boundary of f and any unit vector V tangent to the boundary
of the set

Rto) ={zeR”: f(x,to) >0}

at the point P, we have
D} fV'V/?<0,  at P.

Proof. The result follows by a simple approximation argument. Consider a se-
quance of points Py, = (x, tp) converging to the point P and such that the sequence
cx = f(Py) decreases to zero. Let Vi, = (V}') be a sequence of unit vectors tangent

to the level set f(x,tg) = ¢ of f at Py and such that Vj, — V as k — co. Since

D2, (\/f) <0, at P
we have
D2 (\/}) Vivi <0
which implies that

7P DY (P ViVi < 3 SR S (P VEV]

where f; = D, f. Since each vestor Vi, = (V}!) is tangent to the level set f(zg,to) =

¢k at Py, we have
Fi(PR)f(P)VEV] =0
inequality implying that
F(Pe) D f(PL) ViV < 0.
Because f(Py) > 0 we must have
D} f(P)ViVE <0
which implies (3.7) by taking the limit & — oc.

We are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. We will use the maximum principle on

2
X:f—ifet
2

where f; = D, f, for i = 1,2, ...,n and the summation convention is used. Then we

will send € to zero to get the desired estimate. Since

ft:ffkk+7”f13
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we compute
(3.1) Xe=fifiu="Fi (ffon+rfR), = I Fr + Ffi Fiwr + 27 fufifri — €.
On the other hand Xy, = f; fir and Xgx = f; firr + f2, so that

fXuk = [ firw + f fike
Hence, using (3.1) we conclude that

(3.2) Xo=fXpe— [ fo+ 7 fon +2rfr X — €.

Interior Estimate. At an interior maximum point P of X we must have
J Xk <0

while X = 0 for eack k. Hence, from (3.2) we deduce that

dX(P)
ot

< f2 fon—e
Therefore, it is enough to show that
Af=fex <0

at an interior maximum point P of X. We can assume, by rotating the coordinates

that
(3.3) fn>0 and fi=0, i=1,.,n-1
at the point P. Moreover,

Xn = fu fan =0, at P

which implies that
fan =0 at P.

It remains to show that
fre <0, VeE=1,..,n—1.
But this follows directly from the root concavity inequality
[ I VIVI < L LRV

by taking V = (V*) with V¢ = §* and using (3.3).
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Boundary Estimate. Assume now that X attains its maximum at a free-bounadry

point P = (xg, o) and also assume that
(3.4) fo>0 and  fi=0, i=1,.,n—1
at the point P. Since, f(P) = 0 we conclude by (3.2) and (3.4) that
Xo < 7 frr+2rfn Xy — €
at P. Also, since f,, > 0 at the maximum point P of X, we must have
X, <0, at P

concluding that

ox _
ot —
We will show that frr < 0. Indeed, , by (3.4), we have

(3.5) I3 frk =, at P .

Xn = .fi fin = fn fnn

and P. Since X,, < 0 at P we conclude that f,, < 0, at P. It remains to show
that
fii <0, 1=1,...,n—1.

But this follows immediately from Lemma 3.2, since each of the unit vectors Vj, =

(0:r), k=1,...,n — 1 are tangent of the boundary of the set
2(to) ={f(-,t0) >0}

at P.
Lemma 3.4.Assume that f satisfies the non-degeneracy condition
(3.6) aft+f>e>0, on f>0,t=0
and the inequality

Af > -K, on t>0
for some positive constants c, a and K. Then, at time t > 0 we have

(a+t)fi + f>ce X on f>0.

Proof. Set
F={t+a)fi+f

We will prove, using the maximum principle that

F > ce Kt on {f>0}
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provided that FF > con { f > 0} at time ¢ = 0. By direct a computation we find
that F' evolves by

Fi=fAF+2rDf - DF+AfF
on {f>0}. Since Af > —K, we obtain that for FF >0
F,>fAF+2rDf -DF —KF
and therefore F' = F et + et satisfies the differential inequality
(3.7) F, > fAF +2rDf - DF + ¢

with r = 1/(m — 1) > 0. It is clear, by (3.7), that the minimum of ' cannot be
attained in the interior of the set { f > 0}. Let P be a free-boundary point where
F is minimum. By rotating the coordinates we can assume that at the point P,
D, f >0, while D;f =0foralli=1,..,n—1. Then, since F is minimum at P we
must have

D, F >0, at P.
Therefore, Df - DF > 0 at P and hence by (3.7) we obtain
Ft > € at P.
We conclude that
F>e¢, on f>0

for t > 0, provided that F > ¢ on { f > 0} at time ¢ = 0. This shows the desired

result.

Corollary 3.5. Assume that at time t = O the initial pressure f is root-concave

and satifies the non-degeneracy condition
f+IDf*>c>0, on f>0
and the lower bound on the Laplacian
Af>-K

for some positive constants ¢ and K. Then, fort > 0, f satisfies the non-degeneracy

estimate

1 1
f‘i’(t‘i’m) (T+§)|Df|2 ZCQiKt, on f>0

m
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Proof. We will apply Lemma 3.4, to F = (t+ «) fy + f, with o = K}s-r' Att=0

we have

F=afi+f=afAf+ar|Df*+f

and therefore, since Af > —K and a = ﬁ, we have
2 r 2
F>(1—aK)f+arDff = —— (f+DfF).

The non-degeneracy estimate on f implies that at ¢t =0

cr
F> 0}.
2 g on {/>0}
Hence, by Lemma 3.4, for ¢t > 0
FZKCj;re_Kt, on {f>0}

which implies that

cr

(3.8) (t+a)fAf+r(t+a)\Df|2+f2KJrre_Kt, on {f>0}.

On the other hand, by Theorem 2.1, f is root-concave for ¢ > 0, and therefore
1

(3.9). FAf<5IDfP.

Combining (3.8) and (3.9) we ontain

fH+a) (4 )IDIP2 e o (1> 0)

as desired.

An immediate consequence Theorem 3.2 and Corrolary 3.5 is the following, im-
portant for our purposes, result:
Theorem 3.6. Assume that at time t = 0 the function f is root-concave and

satisfies the upper gradient bound
|IDf| <C
the non-degeneracy estimate
f+|DfI?>c¢>0, on {f>0}
and the lower bound on the Laplacian

Af>-K
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for some positive constants C,c and K. Then, given a free-boundary point P =
P(xg,t), 0 <tg < T, there exists positive constants dy and co, depending only on
C,c, K and T, such that for all z in { f(-,t0) > 0} with d(z,xz0) < do, we have

|Df(;v,t0)| > ¢y > 0.

Based on Theorem 3.6 we will prove the following result, which permits us to
exchange coordinates in a uniform in size neighborhood of a free- boundary point
P.

Theorem 3.7 Assume that at time t = 0 the function f is root-concave and satisfies

the upper gradient bound
|IDf| <C

the non-degeneracy estimate
f+|Df|?>c>0, on {f>0}
and the lower bound on the Laplacian
Af>-K

for some positive constants C,c and K. Then, there exist positive constants p and
co, depending only on C,c, K,T and the shape of the initial support, such that
given a free-boundary point P = P(xg,tg), p < to < T, there exits a unit direction

vV = Uy,, depending only on xg, such that
Df(xz,t)-v>c¢o>0

for all x € 2(t) N By(0), to — p <t < to.

Since, by assumption, f is smooth up to the interface at ¢ = 0, the initial support
Q={zeR": f(z,0) >0}

is a domain with smooth boundary. Moreover, since f is root concave, the domain
{2 is strictly convex. Let us also assume, without loss of generality, that B;(0) C
2, where B;(0) denotes the unit ball B;(0) = {z € R" : |z|] < 1}. For each
x = (r,0) € R™ the half line { (A\r,0); A > 0} intersects the boundary of the convex
domain 2 at a unique point, which we will denote by 6. Let us denote by v the

exterior unit normal to 2 at the point € 9f2. We define the vector field v, by

Ve = Vg.
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The proof of Theorem 3.7 is an immediate consequence of Theorem 3.6 and the
next lemma:
Lemma 3.8. There exits numbers positive p and ng, depending only on the initial
data f(-,0), such that if P = (x9,t0) is a free-boundary point of f with 2p <tq < T,
then

cos(ng(t), Vag ) 2 1

for allx € B,(x0)N82(t), to—p < t < to, where ng(t) denotes the outer unit normal

vector to the level set

Qt,x) ={y eR": f(y,t) > f(x,1)}.

The proof of Lemma 3.8 will be based on the short time existence and the
following geometric result, along the lines of Lemma 2.2 in [3]. For some p >
0,00 > 0, {z|f(x,p) > 0} D (1+6,)2 = {(1+ d,)z|z € 2} by the short time
existence [8].

Proposition 3.9. Assume that f is root-concave and let xg,x1 be two distinct
points in R™\ (140,)§2, where §2 denotes the initial support, such that |zol, |z1| < R.
Then, there exists a constant co = co(R, d,) with 0 < ¢o < 1, such that if

(310) COs <I1 — Zo, Vﬂco> 2 Co

then
f('rlat)gf(z()at)v tZO

Proof. Since the domain {2 is convex, one can easily observe that there exists a

constant ¢g € (0,1), depending on R and the shape of the domain {2, such that if
cos( X1 — To, Vo ) > Co

(2 lies one one side of the line bisecting the line segment Tgz; vertically. Let us

assume, for simplicity that the vertical bisector is the line z,, = a and that
Nci{z:z,<al.

Define the function f on {z: z, <a}, t >0, by

flz,t) = f(2',2a — 2y, t)

where we use the notation z = (2’ x,,). We will show by the comparison principle

that at time ¢ > 0, we have f < f on {z: x, < a}. Indeed, both f and f are



18

solutions of equation f; = f Af+7|Df|?. Moreover, they coincide at x,, = a, while

at t =0, and and for z € {z : =, < a}, we have

f(x,0) = f(«',2a — ©,,0) =0 < f(x,0)

since (2',2a—x,,) lies outside the support {2 of f. Since both f and f are compactly

supported, from the standard comparison principle we deduce that for ¢t > 0

fz,t) < f(z,t) on{z:z,<a}
implying the desired inequality
f($1,t) = f(930>t) < f(xo,t)
We will present now the proof of Lemma 3.7.

Proof of Lemma 3.8. Fix a point P = (xg,p) on the free-boundary of f and
denote by £2(t) the set

2t)={zeR": f(z,t) >0}

Let x € B,y(zo) N {2(t), to — p < t < tg, where p is a small number to be determined

later. Define the cones

Cr={y€By(x0): (y—=z,—va) <o}
and

C2={y€By(xo): (y—x,vp) <}

where &g € (0, 1) is a contant sufficiently small, so that, by Proposition 3.8 we have:

(3.11) Clciy: fly.t)> fla,t)}
and
(3.12) CZc{y: fly,t) < flz,t)}

for all tg — p < t < tg. Since the vector field v, is smooth, we can choose p > 0,

depending only on the initial data, such that
(3.13) (Ve Vary) < 00/2
for all € B, (o). Thus, combining (3.11)-(3.13) we obtain that

Cr={y€By(zo): (y—x,~va,) <b0/2} C{y: fly,t) > f(z,1)}
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and

Cr={y e By(x0): (y—a,va) <0/2} C{y: fly,1) < flx,1)}

for all tg — p <t < tp. This in particular implies that

do

(Mg (t)y Vag ) > Y Vo € By(xo) NI2(t), to—p<t<toy

T
2

where n,(t) denotes the outer unit normal vector to the level set
Q) ={yeR": f(y,t) = f(z,)}.
We conclude that, there exists a poitive number 7 such that
cos{ng(t), Ve ) >,

for all x € B,(zo) N 12(t), to — p < t < to, showing the desired result.

4. LocAL COORDINATE CHANGE AND PRELIMINARY RESULTS

Let us assume in this section that f is a solution of the free-boundary problem

1) o =[Af+r[DfP () €R™ x [0, 7]
f(z,0) = f° reR"
with 7 = 1/(m — 1), where f° is a non-negative and compactly supported function

which satisfies the hypotheses of Theorem 1.1. As in Section 3, we denote by 2(¢),
0 <t<T, the set

Qt)y={xzeR": f(z,t)>0}.

Also, for 0 < 7 < T, let us denote by {2, the set

2. ={(x,t) eR" x (0,7) : f(z,t) >0} = 0<LtJ§TQ(t)
and by ', the interface

T, = U a0().

0<t<r

We will introduce next a local coordinate change, used in [8], [9] which allows
us to transform the free-boundary problem (4.1) near the interface to nonlinear
degenerate problem with fixed boundary. Assume, for the moment, that f is a
C'-function in its support and pick a point Py = (zg,t0) at the free-boundary I'r,

with 0 <ty < T. We can assume , by rotating the coordinates, that at the point P,

an(PO) =co > 0.
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Hence, there exists a number § > 0 for which
(4.2) D,f(P) >c¢>0, VP € As(Py),
where
As(Po) = {(z,t) : x € 2(t) N Bs(xo) to—0 <t <tp}.
Hence, we can apply the Implicit Function Theorem, to solve the equation
2= f(2', 0, t), (2,2, 1) € As(Pp)
with respect to x,, yielding to a function
xn = h(', 2,t).
To simplify the notation, lets us introduce the new coordinates
(4.3) yi=x;, t=1,.n—1, Yn = 2, t=t,
where time is still denoted by t. Denote by Ry the point
Ry = (yo,t0) = (0,0, 1).

Then, we can choose p > 0, sufficiently small, so that the function z = h(y,t) is

well defined in the parabolic cube

(4.4) Qp(Ro)={1Y —w/|<p, 0<yn<p, to—p><t<ty}.

One can show ([8], [9]) that the function h(y,t) satisfies the equation

2271 1 ; 1+Zn 1h2 1+Zn 1h2
4.5) hi =yn | Agn-1h — 'hm —== " hpn
(4.5) hi=y < Rn—1 o + h2 o
where for i = 1,...,n and j = 1, ...,n, we use the notation h; = Dy, h, h;; D;yjh

and Apn-1 = Z::ll hi;. Equation (4.5) can also be expressed in divergence form

([9) as

= s 1+ SR
(4.6) ht = yn Agn—1h —y7" ™" Dy, (yn %) .
The linearization of equation (4.5) at a point h is:

5 2 n 1 i - 1 n— 1h2 n .
47 hi=yn (AR”_lh— Zh L hin + o h,m) +) bih

with
hn h2

n

2Yn
hnp,

(48) bl = — hnn_ hin7 1= 1,...,n—1
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and
n—1
1+h? 2y,(1+h? 2y, hi
(4.9) b= <1" - Un( - - ZT hm) :
i=1 n n n

The linearization of the divergence form equation (4.6) at a point A is:

m—2

(4.10) Bt = Un ARanvl + yﬁn71 Dy" ( yﬁnj A; ill ),

with
n—1
RS>
I
and
L+ >0 w2

It has been shown in [9] that the equation (4.10) has the form
(4.11) uy =y, Di (yit7 a" Dju) + o a™ Dju

with ¢ > —1, where the matrix (a¥) = (a*(Dh)) satisfies

y . _ y 1+ |Dh|?
@66 > min(Lh7?) 67, and [yl <22 ey
Hence
(4.12) a” &g = MEP* and [a¥ gl < ATHE] I,

for some positive constant ¢, provided that
hy=D,h>c>0 and |Dh|<c '

It is easy to observe that these bounds are satisfied by h on the cube Q,(Ry) =
{1y =o' < p, 0<yn < p, to—p*> <t <ty}, since f € C*(As) and satisfies (4.2).
We will use in the next section, the following result by Koch [9].

Theorem 4.1. (Holder Regularity) Assume that u is a solution of the equa-
tion (4.11) in the cube Q, = Q,(Ro) with 0 > —1 and coefficients which satisfy
conditions (4.12). Then, there exists a number v > 0, depending only on n,o, A
such that uw € CY(Qs), with § = p/2, and
lullor @) < ClnoX) o 11" [ Juldu,
P

where du, denotes the measure du, = yg dydt and |Q,(Ro))|s = fQ (Ro) UHo-

We will also need the following generalization of Theorem 4.1, also proven in [9].
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Theorem 4.2. (First Schauder Estimate) Let u be a solution of the equation
(4.13) ug =y, " D (y-77a" Dyu) + vy, Di(yS %)

in the cube Q, = Q,(Ro) with o > —1. Assume that the coefficients a* satisfy
conditions (4.12) and f* € CP(Q,(Ro)), for some 3 > 0. Then, there exists a
number 0 < v < 3, depending only on n,o, X, 3, for which v € CV(Qs), with 6 = §

and

HUHC”(Qs) S C(TL, g, >\) p—’Y ‘Qﬂ|;1 4 |U| d/'bo' + Z ||leCV(Qp)7

2 i=1

where dpo =y, dydt, |Qp(Ro))le = [o (r,) dhic-

The linearlized of the non-divergence form equation (4.7) has the form
U = Yn a" Uij + b,

where the matix (a'/) satisfies conditions (4.12). In addition, if we assume that
yn D;; are continuous in @Q,(Rp), then the coefficients b’ given by (4.8) and (4.9)

are bounded and in addition
(4.14) be> —— >A>0

provided that p and A are is sufficiently small.
In [8] Daskalopoulos and Hamilton showed a Schauder-type estimate for solutions

of equation
(4.15) U = Yo a” uiy +b'u; + g

where the coefficients (a*) and b® satisfy conditions (4.12) and (4.14). Since the
equation is degenerate the Holder norms need to be scaled according to a singular
metric. More precicely, let us consider the half space H = {y, > 0} and define on

‘H the Riemannian metric

The distance between two points * = (z/,z,) and y = (v, y,) in H is a function

s(z,y) which is equivalent to the function

E( y) _ |$/ - y,‘ + |5En B yn|
U VALt ViV =Y

For the parabolic problem we use the parabolic distance

s((2,1), (y;8) = s(z,y) + V[t = s .
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We denote, as in [8] by C¢ the Banach space of all Hélder continuous functions
with respect to the distance s, where the Holder norm is also defined with respect
to s. Suppose next that the set A is the closure of its interior, and the function f
on A has continuous derivatives f;, D;f, ijf, i,j = 1,...,n in the interior of A,

and that
ft7 D’Lf and Yn Dzzjfa Za] = 17 ey T

extend continuously to the boundary, and the extensions are Holder continuous on
A of class C¢(A). We define C27(A) to be the Banach space of all such functions

with norm

co) T Y IDifllcsy + Y gD fllcs (ay-

i=1 i,j=1

1 fllezsea = 1]
Define the box of side p around a point Ry = (yo,to) to be
B.(Ro) ={lyi —woil <p, yn>0, to—p<t<to}.

Theorem 4.3. ( Second Schauder Estimate ) For any o in 0 < o < and

p > 0, there exists a constant C depending on n, A\, and p so that

lullz+es, ,,) < C (Iflces,) + lgllcas,))

for all solutions u € C2+*(B,) of equation (4.15)

The above theorem is proven in [8] in the case of dimension n = 2. The proof of
the Theorem in dimensions n > 3 is very similar, with the obvious changes.

Before we finish this section we will state, for the convenience of the reader, the
short time C'*°-Regularity result, proven in [8]. This will be used, together with
theorems 4.1 and 4.2 in the proof of Therorem 1.1. Let {2 be a domain in R™.
Imitating the case where (2 is the half-space H, we define the distance function s
in {2 to coincide with the standard Euclidean distance at the interior of 2, and
around any point P € 0f2, to be the pull back of the distance s on the half space
‘H via a map ¢ : H — {2 that straightens the boundary of {2 near P. The parabolic

distance s is defined
5((Py,t1),, (P2, t2)) = s(Pr, P2) + /[t — tal.

Similarly to the half-space case we can define the Banach space C(£2), C2+*((2),
as well as the spaces C%(A), C2+%(A), for a subeset A of 2 x [0, 00). The following

two results are proven in [8]:
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Theorem 4.4. Assume that the initial data f° € C*T(£2), and satisfies the non-

degeneracy condition
(4.16) fP+IDfPP>e>0

for some a > 0 and ¢ > 0. Then, there exists a number T > 0 for which the solution

[ of the initial value problem (4.1) belongs to the space C2T(£2,), for all T < T.

Theorem 4.5. Assume that for some T > 0 and some number o in 0 < a < 1,
f € C?*(07) is a solution of the free-boundary problem (4.1) satisfying the non-

degeneracy condition
IDf(, )| + fz,t) 2 >0, (2,1) € 2r.

Then, f is smooth up to the interface on 0 < t < T and in particular the free-

boundary I'r is smooth.
Combining the previous two Theorems we obtain:

Theorem 4.6. Assume that the initial data f° € C2T%(£2), and satisfies the non-
degeneracy condition (4.16), for some o > 0 and ¢ > 0. Then, there exists a number
T > 0 for which the solution f of the initial value problem (4.1) is smooth up to

the interface on 0 <t < T and in particular the free-boundary I'r is smooth.

5. ALL TIME C*°-REGULARITY

This section will be devoted to the proof of the Theorem 1.1. Using the notation

of the previous section, we will first show the following result:

Theorem 5.1. Assume that f° is smooth in the closure its support £2 and that in

addition f° is root-concave and satisfies the non-degeneracy condition
(5.1) fP+IDfP>e>0

for some ¢ > 0. Then, there exists a number 3 > 0 such that the solution f of the
initial value problem (1.1) belongs to the class C2TP(§27), for all 0 < T < cc.

Proof. By Theorem 4.5 there exists a maximal time 7" > 0 for which f is smooth
up to the interface on 0 < ¢ < T. Assuming that T' < co, we will show that at time

t =T, the function f satisfies the non-degeneracy condition

(5.2) f(x,T)+ |Df(x,T)|*> > ¢(T) > 0.
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and also f(-,T) € C*A(Q(T)) with

(5.3) 1FC Dl gzve ey < C-

for some 3 < «. Therefore, by Theorem 4.3, there exists a number 7”7 > 0 for which

fisin C2¥8(82,), for all 7 < T +T’. Theorem 4.4 then implies that f is smooth

up to the interface on 0 < ¢t < T + T”, contradicting the fact that T is maximal.
Condition (5.2) is implied by Corollary 3.5: Observe first that since f is smooth

up to the interface for 7 < T', we can choose 79 small enough so that

f('770)+|Df("7—0)|2 >5>0, T € “Q(TO)'

o

The Aronson-Bénilan inequality Af > —o/t, implies that at ¢ = 79 we have
Af>-K=-2.
To
Hence, we can applly Corollary 3.5 to conclude that

1 1
- VD 2> —K(t—70)
FHG+ ) k) IDIP 2 e

on {f >0} for o <t <T, proving (5.2).

¢
2

We will next prove condition (5.3). Let Py = (xq,%p) be a free-boundary point
with t9 < T. By Theorem 3.7, there exists a number § > 0 depending only on

n,r, T and f° and unit direction v = v,, such that

(5.4) Df -v>¢y >0, V(z,t) € As(FPo)
where
(55) A(s(Po) = {(.T,t) T X E Q(t) n B5(.’170), to—0 <t <t }

We can assume, without loss of generality, that v = e,,, so that
D,f>cy>0, V(z,t) € As(Pp).

Hence, we can perform the local coordinate change (4.3) on As(FPp) to obtain a

function x,, = h(y,t) defined on the parabolic cube

Qn(Ro) = {1y’ —wo'| <n, 0<wyn<n, to—n*<t<ty}
with Ro = (yo,t0) = (20,0,t0). To simplify the notation, we will denote, for any
n > 0 the cube @, (Ro) by @,. Notice, that since f is continuous on R™ x [tg — 6, to],

we can choose p sufficiently small, depending on ¢ and the modulus of continuity

of f, such that
(z,t) € As(Po) if (y,t) € Qn.
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We will show, using Theorem 4.1, that:

Lemma 5.2. There exists a numbers v > 0 and C > 0, depending only on n,r,T

and the initial data f°, such that the gradient Dh satisfies
(5.5) [Dhllcvg,) <C
with 2p = n.
The significance of this Lemma is that the norm || Dhl|c+(q,) remains uniformly

bounded, as tg T T. Let us continue with the proof of Theorem 5.1 and leave the

proof of the lemma for the end. Observe first that (5.5) implies that
HDth?(Qp) =C

for some 8 < ~. Hence, the Schauder estimate of Theorem 5.3 applied to equation

(4.5), implies that h € C274(Q,,/2) with

Illcz+0(q,, = €

Since C' remains uniformly bounded as ¢ T T, we can go back to the original

coordinates to finally concude that
1 lez+a ey <€
finishing the proof of Theorem 5.1.

Before we prove Lemma 5.2 we will show the next simple Lemma:

Lemma 5.3. Under the hypotheses of Lemma 5.2, there exists a constant ¢ > 0,

depending only on n,r,T and the initial data fO such that
|Dh| < ¢t
and
Dy h>c>0
in Qn = Qn(Ro).

Proof. One can easily compute that

Dy, f 1
D, h=—— D, h= .
Yi Drc.,,,f’ Yn Dznf

Since

|Dff<C
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and
D, f>c>0

in As(Pp) the lemma follows.

We will now prove Lemma, 5.2:
Proof of Lemma 5.2. We will show that the derivatives D,,h belong to the
Holder class C7(Q,), with p = /2, by differentiating equation (4.6) with respect
to y; and applying Theorem 4.1.

Let us first show the conclusion of the lemma for the derivatives v = D, h = h;,
i = 1,...,n — 1. Differentiating (4.6) with respect to y;, we find that v = D,,h

satisfies the equation

Ut = Yp Agn—1u + 3, 7 Dyn(y}f“ Ajug),

with o = 2_—1? and
25",
(5.6) A; = Z;Lzl , i=1,...,n—1
and
1+ h?
5.7 A, =
(57) =

where to simplify the notation we denote by h; = D,,h. It follows from (4.12) and
Lemma 5.3 that the coefficients A;, i = 1, ..., n satisfy the hypotheses of Theorem
4.1. Hence,

lullena, < Cln,ouA) o~ |Qsl /Q 3, dy dt.
)

Since o > —1, the last estimate in combination with Lemma 5.3, implies that
(58) HDihHC’Y(QP) < C, 1= 1, ey N — 1

with C depending only on n, o, T and f°.
It remains to prove the same estimate for the derivative u = D, u. Differenti-

ating (4.6) with repsect to y, we find that u = D, h satisfies the equation
(5.9) Uy = Yn Agn—1u + 3, 1T Dy, (2T Aju;) + Agn-1h,

where the A;, i = 1,...,n are given by (5.6) and (5.7). To verify this, let us denote
by

0Lt 1+ h?

= -
and by
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where v = D, h = h,, and summation convention is used. Under this notation,

(4.6) can be simply written as
(5.9) ht = Yn Agn-1h + 4,7 Dy, (4,7°Q).
Hence, differentiating (5.9) with respect to y,, we obtain
U = Yy Agn—ru+ Dy, [y, Dy, (y177Q)] + Agn-1h

which results, after some calculations, to the equation

U = Yn Agn—ru+ (24 0) F +y, Dy, F + Agn-1h.
The last equation can be rewritten as

up = Y Age-ru+y, TV Dy (Y2 F) + Agaih

where F' = D,, Q = A; u;, yielding to (5.9). We observe next that equation (5.9) is
of the form of equation (4.13), with coefficients (a*) which satisfy condition (4.12),

because of the bounds of Lemma 5.3, and
fi=Dsh, i=1,..,n—1  f*=0.
Hence, by Theorem 4.2 and (5.8) we obtain
| Dnhllcvq,) < C,

with C depending only on n,0,T and f°, finishing the proof of the lemma.

6. LESS REGULAR INITIAL DATA

In this section we will show Theorem 1.2. Let f be a weak solution of the initial
value problem (1.1) with continous initial data f°. We would like to assume that

¢ = /[0 is weakly concave on its support {2, namely that it satisfies the inequality

¢($);r¢(y) — &

x+y)<0.

(6.1) 5 <

Denoting by d(z) the distance function from the boundary of {2 we will first

show the following result:

Theorem 6.1. If f© is continous and and strictly positive on the compact domain
2 with fO =0 at 02 and in addition \/ {9 is weakly concave in £2 and satisfies the

non-degeneracy condition

(6.2) (@) > cdx)
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for some conatnt ¢ > 0, then the weak solution f of the initial value problem (1.1)

has f(-,t) weakly concave for all 0 < t < 0.

Proof. Let us approximate the initial data f° by a sequence of functions f,g , SO
that each fp is supported on a compact domains 2, ff € C°(£2;) and satisfies

the estimates

(6.2) DI/ f2<0  onf
and
(6.3) fR@) +DfY > on g

for some constant ¢ > 0. It is easy to observe that such a approximation is possible,
since 1/ f9 on £ is weakly concave and satisfies (6.1). Moreover, { f§'} can be chosen
so that f,g — f9 uniformly on R”. Let f* be the unique weak solution of the initial
value problem (1.1) with initial data f2. Since fy satisfies conditions (6.2) and
(6.3), it follows from Theorem 1.1 that the solution f is smooth up to the interface
for 0 < t < oo and moreover fi(-,t) is root-concave for all ¢ > 0. In particular,
each /[, (+,t) satisfies the inequality (6.1) namely

%E@JM+%E@J)_¢E@51

(6.4) ; ;

£) <0

for all z, y in its support. Since, the sequence of solutions f, is uniformly bounded, it
is equicontinuous on compact subsets of R™ x (0, c0). Therefore, using the equicon-
tinuity result in [10] one can show, by standard arguments, that f* converges,
uniformly on compact subsets of R” x (0, 00), to the solution f. By taking the limit
k — oo in (6.4) we obtain that \/f (-,t) is weakly concave, finishing the proof of
the theorem.

We will assume next that f° belongs to the weighted Holder space C27%(£2), as
defined in Section 4. We will show that:

Theorem 6.2. Assume that the function fO € C?T(£2) is root-concave in 2 and

satisfies the non-degeneracy condition
PHIDFP >0

for some ¢ > 0. Then, the solution f of the initial value problem (1.1) is a smooth
function smooth up to the interface T and f(-,t) is root-concave, for all 0 <t < co.

In particular, the free boundary T is a smooth surface.
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Proof. The proof of this theorem follows quite immediately, by combining the
short time regularity results in [8], Theorems 4.6, and 4.7 with Theorems 1.1 and
6.1. By Theorems 4.6 and 4.7, there exists a number 7" > 0 for which f is C*°-
smooth up to the interface on 0 < ¢ < 7 and also f € C?*T*({2,), for all 7 < T,
where 2, = {(x,t) € R" x [0,7] : f(x,t) > 0}. Therefore, there exists a number
0 < 7 < T, such that f(-,7) is smooth on the closure of its support and satisfies

the non-degeneracy condition
f('aT) + |Df(77—)|2 >¢>0

with ¢ = §. In addition, by Theorem 6.1, the function f(-,7) is root-concave on its
support. Hence, we can apply Theorem 1.1 to conlcude that f must remain smooth

up to the interface, for all 0 < ¢ < T, proving the desired result.

We will finish this paper with the proof of Theorem 1.2:
Proof of Theorem 1.2. Lets us approximate fY by a sequence of functions fp
which are compactly supported, smooth on the closure of their support {2, and

satisfy the gradient estimate
IDfI<C on R"
the non-degeneracy estimate
RAIDIP zc  on gy
the lower bound on the Laplacian
Af) > K on R"
in the distributional sense and the root concavity estimate
D?j <0 on (2

for some positive constants ¢ > 0 and C' > 0 which are independent of k. We can
choose such a sequence f? so that f§ — fi, uniformly on R™. According Theorem
1.1, for each k € N, the solution f; of equation (1.1) with initial data fy is smooth
up to the interface. In addition each fi(:,t) is root-concave on its support for all

t > 0 and satisfies the following estimates, proven in Section 4:
|Dfi| < C on R"

and

Af, > —K on R"
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in the distributional sense and

1 1 _
fk—l—(t—i—m)(r—i— §)|ka\2206 Kt on 2.

Let P = (zo,t9) be a point on the interface of f with t; > 0. Denoting by
Qs(xo,to) the cylinder

Qs(xo,to) ={|z —xo| <8, to—0*<t<to}

we will show the following claim:

Claim. There exist numbers § > 0, ¢ > 0 and a unit direction v, such that
ka “Vgy 2 C, on Qg(ﬂ?o,to)ﬂ{fk > 0}

for all k sufficiently large.
Assuming that the claim holds and that the unit direction v, is the unit vector
Vg, = €n parallel to the =, —axis. Then, we can perform the local coodinate change

(4.3) and apply Theorem 4.1, as in the proof of Lemma 5.2, to conclude that

IDfellcv@sn <C

for some v > 0, with Qs x = Qs(z0,t0) N{ fr > 0} and C is independent of k. We

can now use the Schauder estimate, Theorem 4.3, to conclude that

(6.5) filloz4n s = €

for some 3 < «y, where again C' is independent of k. On the other hand, since f¥ —
f° uniformly, one can show be standard arguments (see in the proof of Theorem
6.1) that fxr — f uniformly on compact sets of R™ x (0, infty). In particular fr, — f
on Qs = Qs(x0,t0) N {f > 0}. By (6.5) we will have

1fllz+og,) = €

which implies that f € C’f*ﬁ(()(s). Hence, by Theorem 4.5, f is smooth up to the

interface, showing the desired result.
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